Все началось, когда я попыталась решить задачу с треугольником. Ломала голову несколько дней. Будет время, сделаю макет из бумаги, а пока вот, может, кто-нибудь решит
Есть еще несколько "невозможных фигур", например, лента Мебиуса. .
Загадки, которые человечество, проникнув вглубь атомного ядра, решить не в состоянии.
Или бутылка Кляйна
читать дальшеЛента Мёбиуса обладает любопытными свойствами. Если попробовать разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую фокусники называют «афганская лента». Если теперь эту ленту разрезать вдоль посередине, получаются две ленты, намотанные друг на друга. Если же разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более тонкая лента Мёбиуса, другая — длинная лента с двумя полуоборотами (Афганская лента). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.Лист Мёбиуса (ле́нта Мёбиуса) — топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть из одной точки этой поверхности в любую другую можно, не пересекая края. Лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году. Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.
Лист Мёбиуса иногда называют прародителем символа бесконечности \infty , так как находясь на поверхности ленты Мёбиуса, можно было бы идти по ней вечно. Это не соответствует действительности, так как символ \infty использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).Лента Мебиуса (Möbius strip) - трехмерная поверхность, имеющая только одну сторону и одну границу, обладающая математическим свойством неориентируемости. Она была открыта независимо одновременно двумя математиками из Германии Августом Фердинандом Мёбиусом (August Ferdinand Möbius) и Иоганном Бенедиктом Листингом (Johann Benedict Listing) в 1858 году.
Модель ленты Мебиуса может быть легко создана из полоски бумаги, повернув один из концов полоски вполоборота и соединив его с другим концом в замкнутую фигуру. Если начать рисовать карандашом линию на поверхности ленты, то линия уйдет вглубь фигуры и пройдет под начальной точкой линии, как уйдя на "другую сторону" ленты. Если продолжать линию, то она вернется в начальную точку. При этом длина нарисованной линии будет вдвое больше длины полоски бумаги. Этот пример показывает, что у ленты Мебиуса лишь одна сторона и одна граница.
В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.
------
Бутылка Кляйна - это математическая неориентируемая поверхность, в которой неразличимы внутренняя и внешняя стороны. Бутылка Кляйна впервые была описана в 1882 году немецким математиком Феликсом Кляйном (Felix Klein). Эта поверхность тесно связана с другой загадочной поверхностью - лентой Мебиуса. Исходное название бутылки Кляйна - "Klein Fla-e-che" (Fläche = поверхность) поверхность Кляйна. Однако, в названии слово Fläche было интерпретировано как Fla-s-che (бутылка), и из-за доминирования английского языка утвердилось в математической науке, и позднее термин "бутылка Кляна" также вошел в обиход и в Германии.
Представим себе бутылку с отверстием в дне. Теперь мысленно удлиним горлышко бутылки, изогнем его в обратном направлении и направим внутрь бутылки сквозь стенку, не касаясь ее (это невозможно произвести в трехмерном пространстве), далее удлиним горлышко до дна бутылки и соединим края горлышка с краями отверстия в дне бутылки. Настоящая бутылка Кляйна в четырехмерном пространстве не пересекается сама с собой.
В отличие от реальных бутылок, поверхность Кляйна не имеет границы, где бы она прерывалась. В отличие от шара или тора, муха, ползущая по поверхности бутылки Кляйна, может попасть с внешней стороны на внутреннюю, не проходя сквозь поверхность.Свойства
Если рассечь бутылку Кляйна на две половинки вдоль плоскости симметрии, то получатся две зеркальных ленты Мебиуса, одна - с разворотом вполоборота вправо, другая - с разворотом вполоборота влево. Фактически, возможно рассечь бутылку Кляйна так, что получится одна лента Мебиуса.
Иначе, бутылка Кляйна может быть представлена в виде двух лент Мебиуса, соединенных друг с другом обычной двухсторонней лентой. На рисунке ниже внутренняя поверхность этой ленты окрашена белым цветом, а внешняя - голубым.
Бутылка Кляйна в виде двух лент Мебиуса
Бутылка Кляйна может быть создана из одного цилиндра. Один из краев цилиндра загибается в обратную сторону, проходит сквозь цилиндр и склеивается с другим краем. Чтобы совершить это склеивание, необходимо исказить ширину цилиндра. На рисунке ниже показано это преобразование. Для наглядности внешняя сторона цилиндра окрашена в белый цвет, а внутренняя - в зеленый.
материалы частично взяты отсюда www.im-possible.info/russian/about/index.html
мозгодробилки
Все началось, когда я попыталась решить задачу с треугольником. Ломала голову несколько дней. Будет время, сделаю макет из бумаги, а пока вот, может, кто-нибудь решит
Есть еще несколько "невозможных фигур", например, лента Мебиуса. .
Загадки, которые человечество, проникнув вглубь атомного ядра, решить не в состоянии.
Или бутылка Кляйна
читать дальше
Есть еще несколько "невозможных фигур", например, лента Мебиуса. .
Загадки, которые человечество, проникнув вглубь атомного ядра, решить не в состоянии.
Или бутылка Кляйна
читать дальше